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GLOBAL ATTENUATION OF RANDOM
VIBRATIONS IN A TAPERED AND SWEPT PANEL
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The thin panels used in many modern-day structures are often prone to vibrate at
excessive amplitudes. Instead of suffering the weight penalties which may be associated with
passive damping treatments, an approach which can make use of the computational power
on board many of these structures is to dampen such vibrations actively. Piezoceramic
strain actuators, because of their compact and lightweight nature, and because of their lack
of a need for a supporting structure to provide reaction points, are ideally suited for such
applications. A technique is presented herein for the design and implementation of two
two-input–three-output multi-variable controllers which use two piezoceramic patches as
actuators, and a further two such patches, as well as an accelerometer, as sensors. These
controllers are implemented on a tapered and swept aluminium panel subject to random
excitation, such that the first five modes are simultaneously observed and controlled. A
technique that determines good locations for the sensors and actuators, based on the modes
to be controlled, is employed. The results show that the controllers perform well with
respect to spillover, robustness and non-linearities. Finally, the results of an accelerometer
traverse are presented, demonstrating the global nature of the vibration attenuation
achieved.
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1. INTRODUCTION

In the interest of saving weight, many modern-day structures contain thin, unsupported
panels. Such panels are often prone to vibrate at excessive amplitudes. One method of
overcoming this problem is via the application of passive damping treatments. However,
such an approach may negate the weight savings gained by using the thin panels in the
first place.

In view of the computing power on board many of today’s structures, a viable approach
to the solution of this problem is to employ digital feedback control actively to dampen
these vibrations. Patch-type piezoceramic strain actuators, because of their thin,
unobtrusive and lightweight nature, their ability to induce significant strains in their host
structure, and their lack of a need for a supporting structure to provide reaction points,
are ideally suited for such applications.

Much research has been conducted in the past decade on the static and dynamic control
of flexible structures using piezoelectric strain actuators and sensors. In this research, a
considerable amount of attention has been devoted to beam-like structures. For example,
in one of the earlier papers in the field, Bailey and Hubbard [1] analyze and experimentally
demonstrate a polyvinylidene fluoride (PVDF) distributed-parameter piezoelectric active
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vibration damper for a cantilever beam. A controller was designed using Lyapunov’s
second method and compared to two negative velocity feedback controllers, one with
constant gain, and the other with constant-feedback voltage and time-varying gain. To
simplify the problem, only the fundamental bending mode was excited and subsequently
controlled. This work is extended by Burke and Hubbard [2], who present an analysis of
distributed actuator control of flexible beams with various boundary conditions and
non-uniform spatial distributions of piezoelectric material, with the second method of
Lyapunov again being used to derive the control laws. It is shown here that certain
boundary conditions require non-uniform actuator spatial distributions to be controllable.
The actuation, sensing and control of flexible beams with piezoelectric strain actuators
receives further attention in references [3–6], with reference [6] also examining the
interesting case of simultaneous sensing and actuation.

Plate and shell-like structures have also received some attention in this field. For instance,
Tzou and Gadre [7] develop an analytical model for a shell with an embedded piezoelectric
layer. A finite element approach is then adopted by Tzou and Tseng [8] to model the dynamic
behaviour of such structures. Possible applications detailed in the literature have related to
a variety of areas, including vibration reduction, and sound radiation and transmission.
Dimitriadis and Fuller [9] undertake a theoretical investigation into the active control of
sound transmission through, and radiation from, a vibrating plate with piezoelectric strain
actuators bonded to its surface. Dimitriadis, Fuller and Rogers [10] develop an approximate
dynamic model for the vibration response of a simply supported elastic rectangular plate
excited by a piezoelectric patch of variable rectangular geometry. Silcox [11] provides details
of an experimental investigation which controls the sound pressure levels in a cylindrical
structure with these actuators. Fuller, Hansen and Snyder [12] experimentally study the
active control, with a piezoceramic actuator, of sound radiation from a thin rectangular
panel. D’Cruz [13] experimentally demonstrates the use of a single-input–single-output
pole-placement controller in attenuating the vibrations in a randomly excited rectangular
panel. References [14–17] provide details of more recent studies.

Also reported in the literature are details of the distributed control of aerodynamically
induced vibrations. Nitzche and Breitbach [18] analyze the possibility of helicopter
rotor blade vibration attenuation with embedded lead zirconate titanate (PZT) actuators.
Linear Quadratic Gaussian (LQG) and adaptive control schemes are evaluated, with
the conclusion that the latter is necessary in order to cope with the variations in system
characteristics with the blade position. Controller saturation problems occur when the
control of higher modes is attempted, and/or when higher aerodynamic loadings are
encountered. Heeg [19] presents an analytical investigation and experimental
demonstration of wing-flutter suppression using piezoceramic actuators mounted on the
wing support mechanism. Single-input–single-output control utilising gain feedback design
was employed. Further investigations are under way at the NASA Langley Research
Center and the Massachusetts Institute of Technology in which flutter suppression is to
be achieved with an array of piezoceramic actuators embedded in the wing structure itself.
Finally, Scott and Weisshaar [20] present a study of the use of piezoelectric actuators in
the suppression of supersonic panel flutter with Linear Quadratic Regulator (LQR)
controller design.

In the work described below, two two-input–three-output pole-placement controllers
which use strain and acceleration feedback to determine the two piezoceramic strain
actuation voltages are designed and tested on a tapered and swept aluminium panel. The
control design methodology separates the system into two loops, each with one input and
two outputs. This control design technique represents an extension of that detailed in [21],
in which two control loops were also separately designed. The advantage of using two
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single-input–two-output loops instead of one multi-input–multi-output loop is that the
controller design process is simplified, thereby providing a greater degree of physical
insight into the problem. Furthermore, such an approach does not necessarily result in a
system with inferior design properties [22].

The panel is clamped along one edge and excited randomly by a loudspeaker such that
at least its first five modes respond. The first five of these modes are subsequently observed
and controlled. A method which determines good locations for each of the three sensors
and two actuators, based on the shapes of the first five normal modes, is presented, as are
results of an accelerometer traverse, which demonstrates that global attenuation is
achieved. The results presented also show the controller to possess the desirable properties
of lack of spillover, robustness to signal drift and saturation, and insensitivity to
non-linearities.

2. TEST STRUCTURE

The geometry of the tapered and swept panel used to perform the experiment is
illustrated in Figure 1. As may be seen, four piezoceramic patches in total were employed,
two as actuators and two as sensors. Each patch, composed of PZT, had dimensions of
64 mm×38 mm×0·2 mm. The signal from the accelerometer was also used for feedback,
thereby giving the plant two inputs and three outputs, with a mixture of collocated and
non-collocated actuators and sensors. A loudspeaker, positioned approximately 30 mm
from the panel, was used to excite at least the first five modes by providing band-limited
random noise in the 3–100 Hz range.

3. SENSOR AND ACTUATOR LOCATIONS

It is important that each sensor and actuator be placed in a location in which it is able
to observe and control a designated mode, or set of modes. What follows is an account
of the reasoning employed to determine good locations for the sensors and actuators with
this condition in mind.

The PZT patches respond to and impart a quantity which is proportional to the sum
of principal strains or, namely, the bulk strain, while the accelerometer, at a particular
frequency of (sinusoidal) excitation, has an output signal amplitude proportional to its
displacement amplitude. It is hence important to determine the displacement field, and the
distribution of bulk strains, over the panel. This was done by building a dynamic finite
element model of the panel. As the panel is lightly damped, the model did not incorporate
any damping. In Figure 2 are shown, for the first five normal modes, the contour plots

Figure 1. The test structure.
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Figure 2. The displacement contours. (a) Mode 1, 5·6 Hz; (b) mode 2, 19·9 Hz; (c) mode 3, 35·5 Hz; (d) mode
4, 49·3 Hz; (e) mode 5, 84·9 Hz.

of displacement thus obtained, with the maximum displacement contour indicated. The
corresponding representation for the bulk strains is shown in Figure 3.

Reference to Figures 1 and 3 will then reveal that the PZT sensor and actuator at the
top l.h.s. of the panel are in a region in which the bulk strain is a maximum for the first
and third modes. Likewise, the PZT sensor and actuator near the top r.h.s. are in a region
in which the bulk strain is maximized for the fourth and fifth modes. Because of the limit
in the number of sensors and actuators, no PZT transducer was located in the area in which
there was a peak in the bulk strain for the second mode. However, the PZT sensor and

Figure 3. The bulk strain contours. Key as Figure 2.
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Figure 4. The experimental apparatus.

actuator near the top r.h.s. are in an area in which the bulk strain for mode 2 is relatively
high, and should therefore be in good locations to observe and control that mode.

As far as the accelerometer is concerned, in Figures 1 and 2 it is shown that it is located
in a region in which the acceleration is maximized for modes 1, 2, 4 and 5. Although it
is not located in the area in which the acceleration is a maximum for the third mode, it
is located is a region in which the acceleration levels for that mode are still high. It should
consequently also be in a good location to observe the third mode.

4. EXPERIMENTAL APPARATUS

A schematic of the equipment used to implement the two-input–three-output controller
is shown in Figure 4. It will be seen that low-pass filters were employed. This avoided
aliasing of the output signals and removed the high frequency components present in the
input signals, which were comprised of zero order holds. It will also be seen that only one
amplifier (for the accelerometer) was used for the output signals. This was because the raw
signals from the PZT sensors were of sufficient amplitude so as not to require
amplification.

5. SYSTEM IDENTIFICATION AND CONTROL LAW DESIGN

The system illustrated in Figure 4 may be modelled by two loops, one within the other,
each with one input and two outputs. This technique was also used in reference [21], with
the important difference that each loop therein was a single-input–single-output one.

Now, each of the one-input–two-output loops may be represented by the ‘‘black-box’’
system shown in Figure 5, and by the corresponding discrete-time linear difference
equations

y(t)+ a1y(t−1)+ · · ·+ anay(t− na )=B1u(t−1)+ · · ·+Bnbu(t− nb )+ e(t) (1)

and

u(t)+ f1u(t−1)+ · · ·+ fnfu(t− nf )=−[G0y(t)+G1y(t−1)+ · · ·+Gngy(t− ng )]. (2)
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Figure 5. The loop block diagram.

(The variables appearing in Figure 5 are the z-transforms of those in equations (1) and
(2).) If each of these loops shares only one sensor, the resulting system will have two inputs
and three outputs. The unknown coefficients ai , Bi , fi and Gi for each loop are determined
as follows.

For each one-input–two-output loop define the parameter vector u as

u=[a1 . . . ana b111 b211 . . . b11nb
b21nb

]T, (3)

and the regression vectors c1(t) and c2(t) as

c1(t)= [−y1(t−1) . . . −y1(t− na ) u(t−1) . . . u(t− nb )]T

and

c2(t)= [−y2(t−1) . . . −y2(t− na ) u(t−1) . . . u(t− nb )]T, (4)

where t=1, . . . , N. Minimization of the objective function

Sc =
1

2N
s
N

t=1

{[ y1(t)−cT
1 (t)u1]2 + [ y2(t)−cT

2 (t)u2]2}, (5)

where

u1 = [a1 . . . ana b111 . . . b11nb
]T and u2 = [a1 . . . ana b211 . . . b21nb

]T,

results in the following least-squares estimate for the parameter vector:

u
 LS
N =$s

N

t=1 6$L1(t)
R1(t)%[LT

1 (t) RT
1 (t)]+$L2(t)

R2(t)%[LT
2 (t) RT

2 (t)]7%
−1

×$s
N

t=1 6$L1(t)
R1(t)% y1(t)+$L2(t)

R2(t)% y2(t)7% (6)

where

L1 = [−y1(t−1) . . . − y1(t− na )]T, L2 = [−y2(t−1) . . . − y2(t− na )]T,

R1 = [u(t−1) 0 . . . u(t− nb ) 0]T, R2 = [0 u(t−1) . . . 0 u(t− nb )]T.

This estimate will be unbiased if the assumption that the noise e(t) is white is satisfied.
Therefore, if a spectrally rich known signal u is used to excite the system and the responses
y1 and y2 are recorded, equation (6) may be used to estimate the system coefficients, namely
ai and Bi .

It will be noted from equation (5) that the two terms comprising the r.h.s. of the objective
function were equally weighted. If, after computing u
 LS

N from equation (6), the two terms
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Figure 6. An alternative loop block diagram.

prove to be non-identical, the estimator will not have the minimum variance and is then
deemed to be not efficient. To ensure that an unbiased and efficient value or, alternatively,
the Minimum Variance Unbiased Estimator (MVUE), of u is obtained, the following
procedure could have been adopted:

(1) Determine u
 LS
N from equation (6).

(2) Compute m=[aN
t=1 ( y1(t)−cT

1 (t)u
 1)2]/[aN
t=1 ( y2(t)−cT

2 (t)u
 2)2].
(3) Define S	 c =(1/2N) aN

t=1 {[ y1(t)−cT
1 (t)u1]2 + m[ y2(t)−cT

2 (t)u2]2}.
(4) Minimize S	 c to obtain u
 .
(5) Return to step (2).

When the parameter m has converged, the estimator will be the MVUE; in other words,
if the observations are weighted according to the inverse of their variances, the resulting
estimator is the MVUE. The interested reader is referred to Ljung [23] for the proof and
for a comprehensive description of the statistical properties of the least-squares estimate.

Although this iterative procedure was not adopted, the unbiased estimate for u obtained
from equation (5), when subsequently employed to develop the controllers tested in this
work, resulted in good vibration attenuation. This will be seen from the experimental
results presented later.

It now remains to determine the coefficients fi and Gi , the controller gains. The approach
used in this paper falls under the general description of pole placement. It is, because of
the presence of multiple outputs, somewhat more involved than that detailed in reference
[21]. However, because each loop has only a single input, solving for the controller gains
is still possible with linear algebraic techniques.

Figure 5 may alternatively be represented by the more conventional control systems
block diagram of Figure 6, where Bo(t)= e(t). It then follows that

Y=F[AF I+BG]−1BE, (7)

which, for the one-input–two-output loop presently under consideration, gives

Y=
F[B11B21]T

H
E, (8)

where

H=H(z−1)=A(z−1)F(z−1)+B11(z−1)G11(z−1)+B21(z−1)G12(z−1). (9)

The closed loop poles are therefore given by the zeros of H(z−1), the closed loop
characteristic polynomial.

In the approach detailed in reference [21], it was possible uniquely to determine the
controller gains by specifying the locations of a number of closed loop poles, which was
equal to the degree of the corresponding closed loop denominator polynomial. In the case
under consideration here, this is no longer possible. For example, with
na = nb = nf = ng +1,† pole assignment results in 2na equations with a total of 3na

controller gains to be determined.

† Assume this to be the case from this point onward.
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These 2na equations are formed as follows. If 2na closed loop poles are chosen such that
they represent the roots of the equation

z2na + r1z2na −1 + · · ·+ r2na =0, (10)

the l.h.s of this equation may be equated to z2naH(z−1). This yields the 2na equations

[Sa Sb11 Sb21]c= r, (11)

where

1 0 · · · 0K L
G Ga1 1 · · · 0
G G.

.

.
.
.
.

.
.
.

.
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.G G
G Gana −1 ana −2 · · ·
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.G G
Sa = ana ana −1 · · ·

.
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,G G

G G
0 ana · · ·
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.G G
G G.
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.G G
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0 0 · · · anak l
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bij1 0 · · · 0K L
G Gbij2 bij1 · · · 0
G G
G G.
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· · ·
.
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.G G

bijnb
bijnb−1 · · ·
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.G G
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G G
G G0 0 · · ·
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.G G
.
.
.

.

.
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.
.
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.

.

.
G G
G G

0 0 · · · bijnbG G
0 0 · · · 0k l

c=[f1 . . . fnf g110 . . . g11ng g120 . . . g12ng
]T

and

r=[(r1 − a1) . . . (rna − ana ) rna −1 · · · r2na ]
T.

The pole assignment problem may now be solved by additionally minimizing the
objective function

Sg = 1
2 $s

nf

i=1

Ki f 2
i + s

ng

i=0

(K11ig
2
11i

+K12ig
2
12i

)%+ l1l1 + · · ·+ l2nal2na , (12)
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where l1, . . . , l2na are unknown coefficients and l1, . . . , l2na are the expressions obtained
from each of the 2na l.h.s.’s of equations (11) after transferring all terms on the
corresponding r.h.s there. This is equivalent to minimizing a weighted sum of the squares
of the controller gains subject to equations (11), which define the pole placements, being
satisfied (l1, . . . , l2na are the Lagrange multipliers—see, for example [24]). The
minimization is performed by satisfying the condition 1Sg /1f1 = · · ·= 1Sg /1g12ng

=0.
Although 2na further unknowns (the Lagrange multipliers) are introduced, 3na additional
equations can be formed. The problem now becomes one with 5na equations and 5na

unknowns:

Ax= b, (13)

where

A=$P

Q

0

PT%, x=[cT l1 . . . l2na ]
T,

b=$rT 0 . . . 0zcv
1+3na %

T

, P=[Sa Sb11 Sb21]

and

Q=diag[K1 . . . Knf K110 . . . K11ng
K120 . . . K12ng

].

The following interpretation may be placed on the above-described minimization.
Equation (2) may be written as

u(t)=− s
nf

i=1

fiu(t− i)− s
ng

i=0

[g11iy1(t− i)+ g12iy2(t− i)]. (14)

Let there be disturbances to u(t− i), y1(t− i) and y2(t− i), and represent these by
du(t− i), dy1(t− i) and dy2(t− i) respectively. Then

du(t)=− s
nf

i=1

fidu(t− i)− s
ng

i=0

[g11idy1(t− i)+ g12idy2(t− i)]. (15)

Assuming that the disturbances from one time interval to the next are uncorrelated, i.e.,
terms such as E[du(t− i)du(t− j)]i$ j =0, it follows that

E[du(t)]2 = s2
u s

nf

i=1

f 2
i + s

ng

i=0

(s2
y1
g2

11i
+ s2

y2
g2

12i
), (16)

where

E[du(t− i)2]= s2
u , i=1, . . . , nf ,

E[dy1(t− i)2]= s2
y1

and E[dy2(t− i)2]= s2
y2
, i=1, . . . , ng .

From equation (16) it may be seen that if the weighted sum of squares of the controller
gains on the r.h.s is minimized, the effect of the above-mentioned disturbances on the
computed control signal u(t) is also minimized (cf., equation (12)).

Now, there are na open loop poles and 2na closed loop poles. If the na ‘‘excess’’ poles
are assigned to the origin, it follows from equation (10) that rna +1, . . . , r2na =0. Hence,
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from both equations (11) and (13), fnf =0. In the light of this knowledge, equations (12)
and (13) may respectively be recast in reduced form as

S�g = 1
2 $ s

nf −1

i=1

K�if 2
i + s

ng

i=0

(K�11ig
2
11i

+K�12ig
2
12i

)%+ l�1 l�1 + · · ·+ l�2na −1l�2na −1, (17)

and

A� x̄= b�, (18)

where

A� =$P�
Q�

0

P�T%, x̄=[c̄T l�1 . . . l�2na −1]T,

b�=$(r1 − a1) . . . (rna − ana ) 0 . . . 0zcv
1× (4na −2)%

T

, P� =[S�a S�b11 S�b21],

Q�=diag[K�1 . . . K�nf −1 K�110 . . . K�11ng
K120 . . . K�12ng

],

c̄=[f1 . . . fnf −1 g110 . . . g11ng
g120 . . . g12ng

]T,

K L1 0 · · · 0
G Ga1 1 · · · 0G G
G G.

.
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Equation (18) may be solved by first partitioning x̄ and b� so that

$P�
Q�

0

P�T%$x̄1

x̄2%=$b�1

b�2%, (19)

where

x̄1 = c̄, x̄2 = [l�1 . . . l�2na −1]T,

b�1 =$(r1 − a1) . . . (rna − ana ) 0 . . . 0zcv
1× (na −1)%

T

and b�2 = 0(3na −1)×1.

Then x̄1, the vector containing the 3na −1 controller coefficients or gains, is given by

x̄=Q� −1P�T[P�Q� −1P�T]−1b�1. (20)

For non-zero weights, Q� will be invertible. Also, for all the cases considered, the inverse
of P�Q� −1P�T was found with no numerical difficulties.

6. EXPERIMENTAL RESULTS

The general approach, as already mentioned, is separately to design two
one-input–two-output control loops with one sensor in common, thereby resulting in a
system with two inputs and three outputs. First, a system identification was performed on
one loop and a controller designed for it. With this controller in operation, a system
identification was performed on the other loop, and another one-input–two-output
controller was then designed. The two controllers were then operated simultaneously as
a two-input–three-output controller to attenuate the panel vibrations.

The choice of sampling rate is an important one in controller design. In the problem
under consideration here, it is a particularly difficult choice as the ratio of the highest
predicted frequency to be controlled (84·9 Hz) to the lowest one (5·6 Hz) is more than 15:1.
If the sampling rate is too low, there will be problems with controlling the higher modes,
and if the sampling rate is too high, this problem occurs with the lower modes (in addition
to the risk of exhausting the available computing resources). As a compromise, a sampling
rate of 250 Hz was chosen which, as will be seen from the results presented later in this
paper, led to good controller performance, with all the five modes of interest being
controllable.

Referring again to Figure 1, the actuator for the first, or inner, loop was chosen to be
the PZT patch at the top l.h.s. The sensors for this loop were (1) the PZT patch directly
on the opposite side of the panel to the actuator, and (2) the accelerometer shown in
Figure 1 at the bottom l.h.s. A random signal was then generated by the PC 486 DX-2/66
computer shown in Figure 4 and fed, via an 80 Hz low-pass filter and an amplifier, into
the PZT actuator. The resulting sensor responses were filtered by the 80 Hz low-pass filters
shown (only the accelerometer signal required pre-amplification) and fed into the
analog-to-digital converters: 10 000 uniformly distributed random numbers were generated
and output at the 250 Hz sampling rate. All this enabled equation (6) to be employed to
determine the parameter vector u for this loop.
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Figure 7. The open loop poles and zeros for the inner loop. Not plotted: PZT zeros at (−120·7, 0),
(−1·299, 5·098), (−2·804, 0); ACC zeros at (−5·809, 0), (−4·593, 0), (−2·032, 2·315).

A model order of na = nb =20 was chosen. (A more formal technique for the choice of
consistent order models is outlined in reference [21].) With this model order, the poles and
zeros for this loop, given by the roots of

zna + a1zna −1 + · · ·+ ana =0 (poles)

b111z
nb −1 + · · ·+ b11nb

=0 (local zeros—PZT sensor),

and

b211z
nb −1 + · · ·+ b21nb

=0 (local zeros—ACCelerometer), (21)

were plotted in Figure 7. The global zeros are obtained by combining both sets of local
zeros. The first point of note in Figure 7 is that there exist global zeros outside the unit
circle stability boundary. The system is consequently classed as non-minimum phase. This
fact may only be due to the choice of sampling rate, with the continuous time system being
minimum phase. However, it does exclude from consideration certain control design
techniques—for instance, those which move poles to zeros. It will also be seen from
Figure 7 that the poles at 0·79662 0·2437i do not lie as close to the 6 Hz (mode 1)†
frequency lines, as do those at 0·6737 2 0·7281i to the 33 Hz (mode 3) frequency lines. This
is because the former do not lie close to the unit circle in relation to the latter.

The pole-zero plot of Figure 7 may be converted to the continuous time transfer function
plots of Figure 8 (see equation (5) of reference [21]). Even though, as previously mentioned,
the poles at 0·79662 0·2437i do not lie close to the mode 1 frequency lines, the overall
pole-zero positions lead to peaks in the transfer function magnitude at 6·4 Hz and 4·0 Hz
for y0/u0 and y2/u0 respectively, with the former peak being far more pronounced. The peak
in magnitude for the latter, at this low frequency, is not as pronounced because the y2/u0

transfer function relates to acceleration, which is proportional, for sinusoidal motion at
a particular amplitude, to the square of the frequency.

Having identified the inner open loop system, it is now possible to design a controller
for it. As previously mentioned, the technique used for controller design was that of pole
placement. Given a set of desired closed loop poles, equation (20) may be used to calculate
the controller gains. However, in order to use this equation, it is also necessary to define

† As will be seen from results presented later in the paper, the first five modes were found to have measured
frequencies of 6, 18, 33, 45 and 78 Hz respectively. These agree well with those found earlier by the finite element
analysis, especially for the lower modes. For the higher modes, the predicted frequencies are higher than the
measured ones because (1) the assumption of a clamped boundary is less valid, and (2) finite element models
are generally stiffer than the structures they represent.
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Figure 8. The open loop transfer functions for the inner loop. u0, PZT; y0, PZT; y2, ACC.

the set of weights contained in the diagonal of matrix Q� . There are a number of ways in
which this may be done. One possibility is to weight the controller gains according to s̄2

u , s2
y1

and s̄2
y2
, as defined in an equation similar to equation (16). Then the mentioned

disturbance-rejection properties will be optimized. Alternatively, use could be made of the
fact that, for high sampling rates, the poles of a sampled continuous system approach unity
(see, for example, equation (1) of reference [25]). The weights may then be chosen based
on the binomial coefficients obtained by expanding (z−1)n. A third method weights the
controller coefficients according to the reciprocals of their squared values, so that the gains
make an equal contribution to the value of the objective function defined in equation (17).
Because the values of the controller coefficients are not known a priori, an iterative scheme
akin to the following may be used to implement this method of weight selection:

(1) Select an initial estimate for the weights.
(2) Compute the controller gains from equation (20).
(3) Assign the weights as reciprocals of squared controller gains.
(4) Repeat from step (2).

In fact, this was the method actually employed in the weight-selection process (the first
of the above-mentioned methods requires s̄2

u , s̄2
y1

and s̄2
y2

to be estimated—not a trivial
task—while the second is not strictly valid unless the sampling rates chosen are actually
much higher than the frequencies present in the system), and it resulted in good controller
performance.

Before the third method was used, it was augmented by a number of features, as follows.
(1) The initial estimates were unity for all the weights. (2) During the course of the
iterative procedure, several of the controller gains converged to zero. If the weights were
merely taken as the reciprocals of the squares of the gains, these weights would then
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approach infinity. To avoid the numerical difficulties associated with this, a limit of 1/o2

was placed on the weights, where o was assigned a value of 10−6 times the average value
of the magnitudes of the controller gains. (3) A limit of 15 was placed on the number of
iterations performed. This number was sufficient to produce convergence in all the cases
considered.

The PZT sensor and PZT actuator for the inner loop were placed so as to observe and
control the first and third modes. The accelerometer was placed in a position which enabled
it to observe the first five modes. Consequently, the poles for the first and third modes
were moved along their respective constant frequency lines towards the origin and the
controller gains calculated using equation (20) in conjunction with the iterative scheme just
described. This has the effect, when the controller is implemented, of increasing the
damping in these modes [21]. (Apart from assigning the previously referred to ‘‘excess
poles’’ to the origin, the other poles were assigned to their stable open loop positions. While
this ensures that they are stable, a pole assignment procedure without this restriction may
indeed yield a smaller control effort. However, some means will have to be found to ensure
that these poles do not cross the stability boundary, for instance, to move to the zeros
outside the unit circle in this non-minimum phase system.)

In Figure 9 is shown the variation in r.m.s. control effort and the unfiltered sensor
response with the prescribed increases in damping in the first and third modes. The sensor
consists of an accelerometer located at the bottom r.h.s. of the panel illustrated in Figure 1
and is therefore not one of the feedback sensors. Test Point 1 corresponds to no increase
in damping for both modes, while Test Point 11 corresponds to increases in damping by
factors of 2·5 and 2·0 for modes 1 and 3 respectively, with linear variations in between.
(The ranges of the damping increases considered were determined by examining the
‘‘control effort per unit increase in damping’’ for each mode separately.)

Figure 9. The r.m.s. control effort and response for various prescribed levels of inner-loop damping.
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It is evident from Figure 9 that the height of the peak for mode 1 does not show a
significant trend as the prescribed levels of damping are increased. This may be attributed
to the fact that the pole corresponding to this mode is located well away from the unit
circle, therefore implying that this mode is already relatively heavily damped. This is in
contrast to the results for the height of the mode 3 peak, which decreases significantly with
the prescribed increases in damping. The pole corresponding to mode 3, as was seen from
Figure 7, is close to the unit circle, indicating light open loop damping. (It is easiest
significantly to reduce the response of lightly damped modes.) A steady increase in the
control effort for the one PZT actuator which is in use at this stage is also shown in
Figure 9.

The choice of an optimal controller depends on the particular circumstances at hand.
It is a function of not only the degree of vibration attenuation sought, but also of the cost
of control energy. Furthermore, at the expense of greatly increasing the time required to
perform the experiment (by incurring the so-called ‘‘curse of dimensionality’’), a far greater
number of combinations of prescribed damping for the two modes could have been
examined in order to enable a more thorough optimization to be performed. Therefore,
for the sake of illustration, Test Point 8 was chosen, where the damping for modes 1 and
3 were increased by factors of 2·05 and 1·7 respectively.

It was mentioned that the number of iterations in the control design procedure was
limited to 15. In Figure 10 is shown the variation of the 59 controller gains f1, . . . , fnf −1,
g110, . . . , g11ng

and g120, . . . , g12ng
with iteration number for the controller of Test Point 8.

It may be seen that all these controller gains converged well before the 15-iteration limit.
Also, several of the gains converged to zero. Use could have been made of this information,
in addition to the fact that fnf =0, to decrease the computation time required to implement
the controller, should this have been a limiting factor.

Having designed the controller for the inner loop, it is now possible to design one for
the outer loop. With reference to Figure 1, the PZT patch at the top r.h.s. was used as
the actuator for the outer loop, with the PZT patch on the opposite side of the panel and
the accelerometer on the bottom l.h.s. serving as the two sensors. This combination of
sensors and actuators was, as previously discussed, chosen to observe and control the
second, fourth and fifth modes.

With the inner-loop controller in operation, the characteristics of the outer loop were
identified, again by first generating a uniformly distributed 10 000-number random

Figure 10. The progress of iterations for inner-loop controller gains.
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Figure 11. The poles and zeros for the outer loop. Not plotted: PZT zeros at (11·55, 13·61), (−5·123, 0·6430);
ACC zeros at (−1·956, 1·909), (−1·059, 2·215), (−1·635, 0), (1·752, 0).

sequence and feeding it, via a second digital-to-analog converter, to the PZT actuator
through the 80 Hz low pass filter and amplifier at a 250 Hz rate. The poles and zeros for
the 20th order model employed to represent the outer loop appear in Figure 11, and the
continuous-time transfer functions in Figure 12.

As for Figure 7, in Figure 11 it is shown that the system is non-minimum phase. Also
to be noted from Figure 11 is the fact that the three sets of poles at 0·9024 2 0·4236i,
0·43242 0·8975i and −0·37142 0·9200i lie close to the 18 Hz (mode 2), 45 Hz (mode 4)
and 78 Hz (mode 5) constant frequency lines respectively. These poles also lie close to the
stability boundary, thereby illustrating the small amount of damping present in the
corresponding modes. This leads to the sharp peaks seen in both the y1/u1 and y2/u1

magnitude curves of Figure 12.

Figure 12. The transfer function for the outer loop. u1, PZT; y1, PZT; y2, ACC.
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Figure 13. The r.m.s. control effort and response for various prescribed levels of outer-loop damping.

The second, or outer, loop having been identified, a controller may be designed for it.
The modes being controlled by this controller are the second, fourth and fifth ones. Hence,
in order to increase their damping, the poles corresponding to these modes were moved
along their respective constant frequency lines toward the origin, with the other poles
assigned to the origin and the open loop pole positions. In Figure 13 is shown the variation
in the r.m.s. control effort and the unfiltered sensor response with the prescribed increases
in the damping of these modes. Again, the sensor is an accelerometer located at the bottom
r.h.s. of the panel. At Test Point 1 there is no increase in the damping prescribed to the
three modes, while at Test Point 11 the damping of modes 2, 4 and 5 were prescribed to
increase by factors of 2·25, 5·75 and 30 respectively, with linear variations in between. (The
ranges of the damping increases considered were determined as for the inner loop.)

It will be seen from Figure 13 that the heights of the peaks for modes 2 and 4 both show
significant decreases with the prescribed increases in damping. In addition, the peak for
mode 5 effectively vanishes for all test points where there was some increase in damping
prescribed. It will also be seen from Figure 13 that the height of the peaks corresponding
to modes 1 and 3 also decrease with the increases in damping of modes 2, 4 and 5. This
is evidence of some structural cross-coupling that is occurring between the inner and outer
loops. Further evidence of this cross-coupling is that the r.m.s control effort for the
inner-loop PZT actuator is actually decreasing with the prescribed increases in outer-loop
damping. As expected, the r.m.s control effort for the outer-loop actuator instead exhibited
a steady increase.

The reason for the inter-loop interaction is that the shapes of the modes under control
are such that they cannot easily (if at all) be separated, so that they excite and respond
to the sensors and actuator of only one loop. This is unlike the case of the rectangular
panel discussed in reference [21], where some separation was readily accomplished.
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Figure 14. The unfiltered r.m.s. acceleration levels with the controller off. (a) ACC at bottom r.h.s.; (b) ACC
at bottom l.h.s.; (c) PZT at top l.h.s.; (d) PZT at top r.h.s.

As for the inner loop, strict criteria were not used to choose the outer-loop controller.
For illustrative purposes, two outer-loop controllers were chosen. The first corresponded
to Test Point 3 and the second to Test Point 6. The prescribed increases in damping for
modes 2, 4 and 5 were factors of 1·25, 1·95 and 6·8 (Test Point 3), and 1·875, 4·325 and
21·3 (Test Point 6) respectively. The first controller led to decreases in all the sensor
feedback signals, while the second, although giving superior performance as far as reducing
r.m.s. accelerations was concerned, led to a slight increase in the r.m.s. signal from the
PZT sensor near the top r.h.s of Figure 1.

Figure 15. The unfiltered r.m.s. acceleration levels with the 2i3o controller on (outer loop, Test Point 3). Key
as Figure 14.
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Figure 16. The unfiltered r.m.s. acceleration levels with the 2i3o controller on (outer loop, Test Point 6). Key
as Figure 14.

As the iterative procedure used to determine them progressed, the behaviour of the
outer-loop controller gains was similar to that exhibited for the inner-loop controller gains,
with several of them again converging to zero.

In Figures 14–16 is shown the variation in the unfiltered r.m.s. signals of four sensors
with frequency with the two-input–three-output controllers turned off and turned on. The
first controller (inner loop, Test Point 8; outer loop, Test Point 3) produces a reduction
in the r.m.s. of the (filtered) feedback sensor signals y0 (PZT at top l.h.s.), y1 (PZT at top
r.h.s.) and y2 (ACC at bottom l.h.s) of 13%, 4% and 19% respectively. The second
controller (inner loop, Test Point 8; outer loop, Test Point 6) produces greater reductions
in y0 and y2 (22% and 32% respectively) but gives a slight increase of 3% in y1. As may
be seen by comparing the lowermost plots of Figures 14 and 16, this is primarily due to
energy from the first and third bulk-strain modes being transferred to the PZT sensor at
the top r.h.s. In view of the decreases in the response levels, especially in the third mode,
at the other sensor locations, the energy transfer is the result of a change in mode shapes,
rather than an increase in modal responses.

A number of additional conclusions may be made from Figures 14–16. First, in
Figures 15 and 16 it is shown that no spillover into the higher modes is evident. Second,
in Figure 14 it is shown that all three feedback sensors (namely, the two PZT patches and
the accelerometer at the bottom l.h.s.) were indeed located correctly by the method
previously described. That is, the PZT sensor at the top l.h.s. sensed the first and third

Figure 17. The positions of the accelerometer during the traverse.
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Figure 18. The r.m.s. acceleration contours with no control.

modes, the PZT sensor at the top r.h.s. the second, fourth and fifth modes, and the
accelerometer at the bottom l.h.s. all five modes.

To demonstrate that reductions in vibration were achieved at other points on the panel,
an accelerometer was traversed across it according to the grid illustrated in Figure 17. The
r.m.s. of this unfiltered accelerometer signal, sampled at 5 kHz, with the no control and
with each of the two-input–three-output controllers operating in turn was recorded at each
of the grid points. These data were used to generate the contour plots of Figures 18–20.

Figure 19. The r.m.s. acceleration contours with 2i3o control: (a) outer loop, Test Point 3; (b) outer loop,
Test Point 6.
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Figure 20. The percentage change in the r.m.s. acceleration: (a) outer loop, Test Point 3; (b) outer loop, Test
Point 6.

From these plots it may be seen that global reductions in r.m.s. acceleration levels
were produced by both controllers, with the second controller being more effective in
this respect (in fact, a decrease due to control was registered at every grid point). The
price paid for this increased effectiveness, however, is the slight increase in bulk strain
seen by the PZT sensor near the top r.h.s. of the panel. The achievement of the goal
of global vibration attenuation, as in reference [21], is a direct consequence of the fact
that the poles were moved in such a manner as to increase the damping in the
corresponding modes. This is a relatively easy task to accomplish with pole placement
controllers.

Because of the way in which the panel was clamped, its low frequency vibrations led
to a chatter-like phenomenon at the supported edge. This chattering in turn led to very
high frequencies being present in the acceleration response, especially near the supported
edge, as may be seen from Figures 21 and 22. Moreover, these plots show that both of
the two-input–three-output controllers tested, by virtue of reducing the vibrations of the
panel which were less than about 80 Hz (which they were designed to do), were also very
successful in reducing the vibrations in the several-kilohertz range.

During testing, the controllers also exhibited good robustness properties. For instance,
despite the fact that significant signal drifts were observed, the controllers continued to
produce good attenuation in vibration levels. In addition, the controllers exhibited
robustness to signal saturation.
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Figure 21. The high frequency behaviour of the 2i3o controller: outer-loop Test Point 3. (a) No control; (b)
control. Within each part: upper graph, ACC at support; lower graph, ACC at tip.

7. DISCUSSION AND CONCLUSIONS

The design and synthesis of two two-input–three-output controllers which suppressed
random vibrations in a tapered and swept aluminium panel were described above.
Although the pole placement technique described is less complex than, for instance, the
well-established Lyapunov or LQG methods, what resulted, when the controller was
implemented, was the following: (1) no spillover into the higher modes was observed; (2)
global reductions in vibration were produced; and (3) robustness to signal drift and
saturation was demonstrated. Points (1) and (2) may be seen from the results presented
above. Point (3) was observed during controller testing, when signal and saturation
occurred intermittently but did not prevent the controller from significantly attenuating

Figure 22. The high frequency behaviour of the 2i3o controller: outer-loop Test Point 6. Key as Figure 21.
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the level of vibration. These three characteristics are indeed desirable and are not
necessarily easy to obtain.

In the second and more effective of the two controllers tested, the bulk strain levels in
one of the PZT feedback sensors was observed to increase slightly. This may have been
overcome by using the flexibility in the above-described controller design technique to
weight the readings from this sensor more heavily.

It was pointed out that, with the lowest frequency to be controlled predicted to be less
than the highest frequency to be controlled by a factor of more that 15, the choice of
sampling rate was a particularly difficult one. (This ratio actually turned out to be 13 for
the measured frequencies.) As a compromise, a sampling rate of 250 Hz was settled upon.
Although this was only 3·2 times the highest measured and controlled frequency of 78 Hz,
the controllers still were able significantly to attenuate this mode, as was evident from
measuring their performance at much higher sampling rates. Nevertheless, if the
requirement had been to produce a ‘‘good’’ 78 Hz waveform, it may have not have been
met so easily with a 250 Hz sampling rate.

Because of the non-linear behaviour of the panel support, excitation of the panel with
3–100 Hz random noise also produced a response in the several-kilohertz range. The
frequency of the highest mode designed to be controlled was 78 Hz. By controlling this
and the lower modes, the response up to several kilohertz was also attenuated significantly,
thereby showing that the support non-linearities did not pose a problem.

In conclusion, it may therefore be stated that the above method for designing
multi-variable controllers is more straightforward than some, and produced controllers
with a good performance and some highly desirable properties. A possible avenue of
further research is to determine the means by which these properties may be guaranteed.
Other possible extensions to the above-described work are to determine if significant
improvements in controller performance may be obtained by: (1) using the MVUE for
system identification; (2) weighting the controller gains by the alternative techniques
described; or (3) removing the constraint that some of the closed loop poles be assigned
to their open loop positions.
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APPENDIX: NOMENCLATURE

ai coefficients of ARX model, i=1, . . . , na

A, A(z−1) =1+ a1z−1 + · · ·+ anaz
−na

A matrix formed from sub-matrices P and Q and defined in equation (13)
bijk ijth component of Bk , i=1, 2, j=1, k=1, . . . , nb

b =$rT 0 . . . 0zcv
1×3na

%
T

b�i components of b� defined in equation (19), i=1, 2
Bij , Bij (z−1) ijth component of B, i=1, j=1, 2
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B, B(z−1) =B1z−1 + · · ·+Bnbz
−nb

Bi 2×1 coefficient vectors of ARX model
c =[f1 . . . fnf g110 . . . g11ng

g120 . . . g12ng
]T vector of controller coefficients or gains

e(t) white noise term of ARX model
E z-transform of o(t)
E z-transform of e(t)
fi controller coefficients or gains, i=1, . . . , nf

F, F(z−1) =1+ f1z−1 + · · ·+ fnfz
−nf

gijk ijth component of Gk , i=1, j=1, 2, k=0, . . . , ng

Gij , Gij (z−1) ijth component of G, i=1, j=1, 2
G, G(z−) =G0 +G1z−1 + · · ·+Gngz

−ng

Gi 1×2 controller coefficient or gain vector, i=0, . . . , ng

H, H(z−) =AF+B11G11 +B21G12, characteristic polynomial of closed loop system
i =z−1
I 2×2 identity matrix
Ki weight on f 2

i in Sg , i=1, . . . , nf

Kijk weight of g2
ijk in Sg , i=1, j=1, 2, k=0, . . . , ng

li expression obtained from l.h.s. of equation (11) after transfer of all terms from r.h.s.
L1(t) =[−y1(t−1) . . . −y1(t− na )]T

L2(t) =[−y2(t−1) . . . −y2(t− na )]T

n power of binomial expansion
na number of coefficients, ai

nb number of coefficient vectors, Bi

nf number of coefficients, fi

ng number of coefficient vectors, Gi , less 1
N number of samples
P =[Sa Sb11 Sb21]
Q =diag[K1 . . . Knf K110 . . . K11ng

K120 . . . K12ng
], diagonal matrix of weights

ri coefficients of polynomial in z formed from 2na assigned closed loop poles
i=1, . . . , 2na

r =[(r1 − a1) . . . (rna − ana ) rna +1 . . . r2na ]
T

R1(t) =[u(t−1) 0 . . . u(t− nb ) 0]T

R2(t) =[0 u(t−1) . . . 0 u(t− nb )]T

Sc objective function for system identification
S	 c weighted (by m) sum of variance of u
 1 and variance of u
 2
Sg objective function, defined in equation (12)
Sa , Sbij Sylvester matrices, defined in equation (11), i=1, 2, j=1
t discrete time variable
ui digital value of control signal as sent to D/A converter j, j=0, 1
u(t− i) control variable at time t− i
U z-transform of u(t)
x =[cT l1 . . . l2na ]

T

x̄i components of x̄ defined in equation (19), i=1, 2
yi sensor response as digitized by A/D converter i, i=0, 1, 2
yj (t− i) jth component of y(t− i), j=1, 2
yi /uj transfer function representing response yi due to excitation uj , i=0, 1, 2, j=0, 1
y(t− i) 2×1 system response vector at time t− i
Y z-transform of y(t)
z−1 backward shift operator
du(t− i) disturbance to u(t− i), i=0, . . . , nf

dyi (t− i) disturbance to yi (t− j), i=1, 2 j=0, . . . , ng

o(t) noise term defined by Bo(t)= e(t)
u =[a1 . . . ana b111 b121 . . . b11nb

b21nb
]T, parameter vector

ui =[a1 . . . ana bi11 . . . bi1nb
]T, parameter vector

u
 LS
N least-squares estimate of parameter vector u with N samples

li Lagrange multiplier, i=1, . . . , 2na

m ratio of variance of u
 1 to variance of u
 2
s2

u , s2
yi

expected values of du(t− i)2 and dyj (t− k)2, i=1, . . . , nf , j=1, 2, k=0, . . . , ng

ci (t) =[−yi (t−1) . . . − yi (t− na ) u(t−1) . . . u(t− nb )]T, regression vector
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Accents and operators
- denotes terms from reduced system
g

estimate
T transpose
1/1x partial derivative w.r.t. x
E expected value


